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SOME MIXED BOUNDARY VALUE PROBLEMS OF
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Absttact-The general case of a rectangular elastic body in plane strain, when two parallel edges are traction
free and mixed conditions are prescribed on the remaining edges, is formulated in terms of a system of two Fred­
holm integral equations of the second kind. The type of mixed boundary conditions may arise due to com­
pression by smooth punches or some periodic arrangement of a system of cracks in an infinitely long strip.
Indentation of a rectangular body by a flat and a parabolic punch is discussed in some detail and numerical
results are reported for quantities of practical interests.

1. INTRODUCTION

THE PRESENT study is concerned with an investigation of the two-dimensional plane
strain problem of stresses and displacements in a rectangular body. A system of Fredholm
integral equations of the second kind is obtained for the general case when two parallel
edges are stress free and mixed conditions are prescribed on the remaining edges. The type
of mixed boundary conditions considered here may arise due to compression by smooth
punches or some periodic arrangement of a system of cracks in an infinite strip. The
governing Fredholm equations are derived by extending the study presented in [1] by
the present authors in which Papkovich-Fadle eigenfunctions were employed to investigate
a certain group of crack configurations in an infinite strip. The integral equations are
numerically solved for various cases to obtain quantities of practical interests.

In the past, mixed boundary value problems of elastostatics in rectangular domain
have been discussed by Sneddon and Berry [2] for the case when two parallel edges were
restrained by smooth rigid planes. On the remaining edges mixed conditions arising due
to compression by two smooth punches of identical shape were prescribed. The problem
was treated by applying the method of complex variable. It is known, however, that
smoothly restrained edge conditions permit treatment of elasticity problems by Fourier
series and, therefore, are mathematically straightforward to analyze. On the other hand,
more natural boundary conditions of stress free edges introduce considerable analytical
difficulties. To handle this situation the method of integral transform [3] has proved quite
powerful but its application has been limited to the special cases when the edges are in­
finitely long. In a series of two papers [4, 5] Keer and Sve have solved the steady state
problem of compression of an infinitely long strip by moving punches. In the first paper [4]
which was concerned with a single moving punch, Fourier integrals were employed
whereas the other study [5] where an infinite number of punches were considered, Fourier
series were used. For both cases final results were based upon numerical solutions of

t The present results were obtained in the course of research supported by NSF Grant GK-25604.
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Fredholm integral equations of the second kind. It appears that no such integral equation
formulation has been attempted for the mixed boundary value problems of a re,ctaagle
considered in this study.

Although the type ofeigenfunctions considered here was introduced in two dimensional
problems by Papkovich [6] and Fadle [7J thirty years ago, its application remained limited
until recently. Among several studies of stresses and displacements due to known forces,
reference may be cited to Gaydon and Shepherd [8] and Johnson and Little [9J, where
attention was focussed on an approximate solution by a finite number of terms obtained
after truncating the infinite series. We like to emphasize here that these studies may be
satisfactory only in those cases where singularities in stresses due to geometrical dis­
continuities do not exist. In the presence of such singularities a mere truncation of the
series is not permitted. For a correct solution the analysis will have to include the entire
series which may be accomplished by adopting the procedure of the present study.

2. STATEMENT OF THE PROBLEM

The rectangular domain is referred by the two co-ordinate axes hx and hz. The bounding
surfaces, Z = ± 1, are considered to be free from tractions. On the remaining bounding
planes x = fa, the displacement Ux and the normal stress d xx are prescribed in the fol­
lowing manner.

Pz(Z) .
d xx( -a, z) =-,.,-, c < Izi :=:; l.

.;;,

(1)

(2)

(3)

(4)

The units of length and stresses are chosen to be hand 2G, respectively and F1 , Fz, PI'...,
Pz are assumed to be even in z. We will also assume

d",A±a, z) = 0 0 S; Izi s; 1. (5)

It may be noted that the solution proposed in Section 3 is capable of considering shear
stress distribution which is antiSylIlmetric in z on the planes x = ±a. However, the
assumption of zero shear stress (equation 5) considerably simplifies the analysis and may
be appropriate in several practical applications.

In the next two sections we will reduce the plane problem of elasticity of the rectangle
with its edges z =~ ± 1 stress free and subjected to the mixed boundary conditions (1-5)
on the edges x = ±a, to the solution of a coupled pair of Fredholm equations of the
second kind. In Section 5 we will discuss results based upon a numerical solution of the
Fredholm equations in the special case when the rectangle is compressed by two smooth
rigid punches of identical shape on the surfaces x = ±a.
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3. SOLUTION OF NAVIER'S EQUATION

The displacements Ux and Uz are assumed in the following form
oc

Ux = -(l-v)(Dx+E)+ L. {An sinh Anx+Bncosh A"X} An!I,,(Z)
n= - ex:

,,;00

ex:

Uz = vDz+ L. {An cosh A"X+G" sinh AnX} {f'I,,(z)+2(l- V)f2"(Z)}

(6)

n= - a:
,,;00

where v is the Poisson's ratio D and E are unknown real constants and A", B" (n = - 00,

... -1, 1, ... co) are a set of complex constants. fl" and f2" constitute a set of complex
valued eigenfunctions symmetric in z satisfying the differential equations

!'{"+A:fl,, = A:f2,,; f~,,+A:f2n = 0 (7a)

with the boundary conditions

(7b)

(9)

(8)

(lOa)

f2"(Z) = - 2 cos J."z.

Associated with (8) there exists a set of functions g Ik and g2k given by

4 cos2 Akga(z) = - (Aktan Ak+2v) codkz +AkZ sin AkZ

4 cos2 Akg2k(Z) = 2 cos AkZ

such that the following generalized orthonormality relation holds, see Ref. [10].

f 1 {fl,,(Z)g2k(Z) + f2,,(z)g lk(Z)} = 0; k::l= n

= 1; k = n.

In the expressions (6, 7a, 7b) !' = df/dz, An (n = 1,2, ... (0) are the nonzero roots of
sin 2A + 2), = 0 in the first quadrant of the complex plane and L" = A" (n = 1,2, ... (0)
where A: is the conjugate of A. We have the following expressions for fl" and f2rr'

fl"(Z) = A" tan A" + 2(l- v) cos A"Z - A"Z sin AnZ

We also note that

Equations (6) yield the following expressions for the stresses a xx , ax: and azzo

axx = -D+ L. (An cosh ;."x+B" sinh )."X)A:{fl,,(Z)-vf2,,(Z)} (11)
n

(12)

(13)

"
where L. indicates summation over n = - 00, ... -1,1, ... 00.

n
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With the help of (7a) it may be easily shown that expressions (6) satisfy the Navier's
equation and equations (12, 13, 7b) imply that the surfaces;:; = ± I of the rectangle are
traction free.

Equations (1-5 and 6, 11, 12) yield the following system of series relations for the
determination of the constants D, E, An and Bn (n = - x. , .. - I, 1, ... Xc).

-(I-v)(Da+E)+IC~Anf'n(Z)= -(l-v)Fi(z); 0 S; Izi S; b (14)
n

-D+I(AncoshA.na+BnsinhAna)l;{fln(z)-vjin(z)}::;;; Pi;Z); b < Izi s 1 (15)
n -

-( I-v)( - Da+ E)+ I C,;~Iln(Z) = (1- v)F2(z); 0 S Izi s c (16)
n

where

and

~ h 1 B' h 1 121 f '} P2(z).-D+.;..(AncOS "'na - nsm Ana)An'\,ln(Z)-V!2n(Z) = -2-'
n

IC~AnUln(z}-(I-v)j2n(Z)}::;;; 0; 0 s Izi S; 1
n

n

c < Izi s 1 (17)

(18)

(19)

(20)

(21)

(23)

It may be noted that to obtain (18 and 19) we substituted (12) in (5) and integrated the
resulting equations with respect to z. It is assumed that the order of integration and sum­
mation may be interchanged.

4. THE FREDHOLM EQUAnONS

To obtain the unknown constants from (14-19) we introduce two unknown functions
¢ 1(t 1)' b s tIS; 1 and ¢2(t2), c S; t2 S 1 such that the displacements ux(- a, z), c :::; izl :::; 1
and ux(a, z), b S z :::; 1 are given by

ux(a, z) = -(1- v)(Da + E)+ ~ C~Anj~n(Z) = -(1- V){{'ZI ¢I(t) dt + FI(b)} ;

b s Izl :::; 1

ux( - a, z) = -(1- v)( - Da + E) + ~ C';AnIln(z) = (1- V){fZI
¢2(t) dt + F2(C)} ;

C :::; Izi :::; 1. (22)

Making use of (14,21, 18 and lOb) it may be easily shown by a permissible change in
the order of integration and summation that

Da+E = (1-b)F1(b)+f (l-t)¢I(t)dt+f F1(z)dz.
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Similarly (16, 22,19 and lOa) yield

1\97

(24)Da - E = (1- clF2(c)+f (1- t)<P2(t) dt +s: F2(z) dz.

The constants D and E may be evaluated by the use of (23 and 24) after <P t(t) and <P2(t)
are determined. To obtain the Fredholm equations for the determination of <pt(t) and
<P 2(t) we employ the following procedure.

Equations (14, 21 and 18) in conjunction with the generalized orthonormality relation
(10a) and the expressions (9) yield

where

Q(A., t) = cot Asin At - t cos At.

(25)

(26)

It may be noted that we made use of a change of the order of integration in order to obtain
(25).

A similar procedure when applied to equations (16, 22 and 19) gives the following
expression for the complex constants C; (n = - x, ... - 1, 1, ... oc)

(27)

By the use of(25, 27 and 20) the constants An and En can now be expressed in terms <Pt(t),
<P 2(t), F~ (t) and F~(t). Substitution of these expressions and (8) in (11) and a change of
the order of integration and summation yields the following expressions for the stress
axxatx=±a,

n= - 7~

where

D+axxla.z) = :z[f <Pt(t)L?(t,z)dt+ s: F'j(t)L?(t,z)dt

+i1 <P2(t)L~(t, z) dt + f: F~(t)L~(t, z) d~

D+axx(-a,z) = d.,.[fl <P2(t)L?(t,Z)dt+J
c

F~(t)L?(t,z)dt
d~ C 0

+f <P 1(t)L~(t, z) dt +s: F'l (t)L~(t, z) dtJ

I An coth 2..1.naQ()'n' tlQ(/'n' z)

2 cos 2 i'n

o ~ A.n cosech 2)'naQ(..1.n, t)Q(A.n, z)
L 2(t, z) = L.. 2 2 A .

n= - ex; cos n

(28)

(29)

(30)
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Let us now consider integration of the function

i( coth 2(a _
(. /' j') Q«(, t)Q(i" z)

n sm ""i, +-i"

around the contour r consisting of the imaginary axis with indentations around the
points ( = (imn/2a) (m = - M, . .. -1,0,1, ... M), the semicircle 1(1 = (N + t)n in the
right hand half plane and the circles around the points' =An (n = - N, ... -1, 1, ... N)
as well as , = mn (m = 1,2, ... N): where M is the largest integer less than or equal to
(2N + l)a. Noting that the residues of the function at ( = An' ( = mn and ( = imn/2a are

and

iAn coth 2A.naQ(A.n, t)Q(~, z)

4n cos2 An

i(coth 2mna +2mna cosech2 mna) sin mltt sin mnz

2mn2

i mnj2a (mn ) R(mn )- R-t _7

2an [sinh(mnja) + (mnja)] 2a' 2a'-

respectively, where

R(A., t) = coth A. sinh A.t - t cosh At (31)

we obtain

(32a)

where

<Xl

L~(t, z) = L
m= 1.2

(coth 2mna-l + 2mna cosech2 mna) sin mltt sin mnz

mn
(32b)

'Xl

L~(t, z) = L
m= 1.2

mn (mn ) (mn )2(i2R 2;i,t R 2;i'Z

. mn mn
smh-+­

a a

(32c)

(32d)
mn

'Xl sin mltt sin mnz
L

m= 1.2

In a similar manner by integrating the function

i( cosech 2(aQ((, tJQ((, t)

(sin 2( +20

around the contour r it may be shown that

L~(t, z) = L2(t, z) - L~(t, z)

Lo( ) _ ~ cosech 2mna( 1+ 2mna coth 2mna) sin mltt sin mnz
6 t, Z - L.

m= t:l mn

0' 00 ;:~secmnR(;:,t)R(;:,Z)
L 7 (t, zj = L: .

m= 1,1 . h mn mn
sm -+-

a a

(33a)

(33b)

(33c)
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With the help of the identities (32a and 33a) equation (28) reduces to

D+<1xx(a,z) = :z {f cPl(t)[L~(t,z)-L~(t,z)+L~(t,z)]dt

fb O' 0 0+ 0 F 1(t) [L 3(t, z) - L4(t, z) + Ls(t, z)] dt

+f cP2(t)[L~(t, z) - L~(t, z)] dt + { F~(t)[L~(t, z) - L~(t, z)] dt}. (34)

A similar equation may be obtained from (29).
We now introduce the following transformations

and denote

t = 1- u, z = I-v, d = I-b, e = I-c (35)

FlU) = F3(u), F~(t) = F4 (u)

PI(z) = P3(v) and P2(z) = P4 (v).

By use of (35 and 36) we can write (34) as

D + <1xx(a, r) = - ~ ·{fdtjt I (u)[L~(u, v) + L~(u, v) - L~(u, v)] du
dv 0

(36)

where

and

U;

L~(u, v) = L
m= 1.2

nm (mn ) (mn )2;i1R 1 ~' U R I ~' V

. mn mn
smh-+­

a a

(38)

mn (mn ) (mn )
00 2a2 sec mnR 1 2a' u R I 2a' v

L8(u, r) = L
m= 1.2 . h 11m mn

sm -+­
a a

RI(i" tI) being given by

R I (i., u) = LI cosh i.(l - u) - cosech i. sinh i.u. (39)
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We now introduce two more unknown functions 01(udO :5 U 1 :5 d and 02(UZ), 0 :5 U2 :5 e
such that

and (40)

(41)

d Ie 02(Y)
W2(U) = - du "J(y2 _ u2) dy.

Substituting (40 in 37) and making use of equations (32b, d, 33b and 38) as well as some
well known identities (11] we obtain

d {7t fd 00 }D+O"x;x(a, v) = --d '~2 01(Y) L Jo(m7ty) sin mv dy +HO(v)
v ° m=J.2

where

o d {7t rd
0 0H (v) = - dv 2J

o
01(y)(L10(y,v)-L 11(y,v)]dy

+rF3(u)(Lg(u, v)+L~(u, v)-L~(u, v)] du

+~ J: °2(y)(L? 2(Y' v) - L? 3(Y' v)] dy+f F4 (u)(Lg(u, v) - L~(u, v)] dU}. (42)

L?0' L? 1 , L? 2 and L? 3 are expressed by the following,

'Xl

L? o(Y, v) = L (coth 2m7ta - 1+2m7ta cosech2 2m7ta)Jo(m7t}/) sin m7tv
m = 1,2

ex>

L?2(Y' v) = L cosech 2m7ta(l +2m7ta coth 2m7ta)Jo(m1ty) sin m1tv
m= 1,2

m1t (m1t ) (m1t )
00 2 sec m1tR3 2' y R 1 -, v

Lo ( ) _ 1 "a a 2a
13 y, V - - f...

a m = 1 2 . h m1t m1t. sm -+-
a a

where

R 3(l, y) = (cosh A.-A. cosech A.)Io(A.y)+A.y cosh A.I l(A.y)-sinh A.Lo(ly)

-A.y sinh A. [~+ Ll(Ak~ (44)
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10 and I I are modified Bessel functions and L o and L I are modified Struve functions.
It may now be noted that equation (2 or 15) is satisfied (refer to equations 36 and 41)

if

o~ v < d.P (v) d {fd <Xl }D+.2-
2

= --d 8lY) L Jo(mny)sinmnvdy +HO(v);
v 0 m=I,2

Use of a well known identity [12]

00 H(v-y) foo
n L Jo(mny) sin mnv = J ,2 ,2 exp( - s) cosech slo(sy) sinh sv ds

m=I,2 (v-y) 0

reduces (45) to an equation of the Abel type whose solution may be written as

8I (y) +Y f: 81(y')[K 2(y, y') - K I (y, y')] dy' +Y J: 82(y/)K 3(y, y/) dy'

= -2y[D+r l(y)+r2(y)]; 0 ~ y ~ d

where,

K 1(y, y') = foCXJ

s exp( - s)1o(sy)1o(sy/) ds

K 2(y, y') = n l~'2 mn(coth 2mna-1 + 2mna cosech22mna)Jo(mny)Jo(mny/)

mn (mn ) (mn I)]1 00 2a ~3 2a' y R3 2a' y
-- L

a m= 1,2 . h mn mn
sm -+­

a a

K 3(y, Y
/
) = nL~ ,2 mn cosech 2mna(l + 2mna coth 2mna)Jo(mny)Jo(mny')

mn (mn ) (mn ')]-L~,2QsecmnR,m:,:.R, 2Q'Y
smh-+-

a a

1fl F3(u) 1fl 0
rl(y) = - .J( 2 2) du-- F3(u)L I4(y, u) du

n d u -Y n d

+f F3(uHL? o(Y, u) - L? I (y, u)] du +rF4 (u)[L? 2(y, u) - L?3(y, u)] du

1 f)' P3(V)
r2(y) = - J( 2 2)dvn 0 y-v

L~4(Y, u) = fa'>O exp( - s) cosech s10(sy) sinh su ds

and L?0' L? l' L 012 , L °13 and R3 are given by (43 and 44).

(45)

(46)

(47)

(48a)

(48b)

(48c)

(48d)

(48e)

(48d)
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By the use of (29, 32, 33, 3S, 36, 38 and 40), it may be shown in a similar manner that
equation (4) or (17) is satisfied if

82Cv)+ Y s: 112(y') [K 2(y, y')- K I(Y' y')] dy' +'Y s: (11(y')K 3(y, y') dy'

= -2y[D+r3(y)+r4(y)]; 0::; y ::; e (49)

where

IJI F4 (u) If I 0r3(y) = - I( 2 _ 2)dU-- F4(u)L I4(y, u) du
7r. e V U Y 7r. e

+rF4(U)[L~o(y,u)-L~I(y,u)]du+f F3(U)[L~2(y,u)-L~3(k,u)]du (SOa)

and

1 l' P4(V)
r4(Y) = I( 2 2) dv.

7r. ov'y-v
(SOb)

It should be noted that the first term in the right hand sides of the equations (47 and 49)
is - 2Dy. By the use of (23, 24, 3S, 36 and 40) the constants D and E may be expressed as

2Da = TI+Tz+~{J: I1 I(y)dy+ s: Oz(y)dY} (Sla)

2E = TI-T2+~{J: 0t(y)dy- J: I1z(y)dY } (SIb)

where

(SIc)

and

(SId)

The functions 0l(y) and 0z(Y) may now be evaluated by solving the simultaneous
Fredholm equations of the second kind obtained by the substitution of the value of D
from (5Ia) in (47 and 49). After these two functions are obtained the real constants D and
E may be evaluated by the use of (51a, b). The complex constants C~ and C; can be ex­
pressed in terms of the functions 01(Y) and Oz(y) by the use of the equations (25 and 27),
the transformations (35, 36 and 40) and some well known identities [11]. For the sake of
brevity we give the final results as

2 cosz A.nC~A.n = -i J: 01(y)Qt(A.n, y) dy- s: F'dt)Q(..l·n, t) dt

2 cosz .A.nC;,1,n = is: I1Z(y)QI(An, y) dy+ { F2(t)Q(An, t) dt

(52a)

(52b)



(53)
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where
QI (A, y) = (cos A- Acosec ./i.)Jo(Ay) - Ay cos VI (Ay)

+ sin AHo(Jiy) + Ay sin A{~- H 1(A.Y)} (52c)

and Q(;., t) is given by (26). In (52c) H°and H I are Struve functions of complex arguments.
Since the complex constants An and Bn may be evaluated by the use of (20 and 52) the
mixed boundary value problem described in Section 2 may now be considered as formally
solved. Based upon this formulation, in the next section we discuss some problems of
practical interest in which the stress and displacement fields are even in x. When symmetry
about z-axis is maintained we must have c = b or e = d and, therefore,

F 1(z) = F2(z) = F(z)

BI(t) = B2(t) = B(t)

P1(z) = P2(z) = P(z)

P3{v) = P4 (v) = q(v) = PO - v)

F3(u) = F4 (u) = Fs(u) = F'(1- u).

In view of (53) the two integral equations (47 and 49) reduce to

8{y)+y J: 8(y')K(y,y')dy' = -2Y[D+r{y)+ h~')J; 0 $ y $ d (54)

where
K(y,y') = K 4(y,y')-K sCv,y')-K I (y,y') (55a)

00

K 4 (y, y') = n I mn(coth mna- 1+ mna cosech2 mna)Jo(mny)Jo(mny') (55b)
m= 1.2

2n ro :n R 3(:n,y)R 3(n:n,y')
K slY, y') = - I (S5c)

a m= 1,2 . h 2mn 2mn
sm -+-

a a

r{y) = (I Fs(u)Lo(u, y) du: L o(u, y) = J(; 2 Lg(u, y). (55d)Jd n u - y )

1 J. 00Lg(u, y) = -- exp( -s) cosech sIo(sy) sinh su ds
n °

_2 f ~R,(~,Y)R,(~,u)
a m= 1.2 . h 2mn 2mn

sm -+-
a a

00

+ I (coth mna - 1+mna cosech2 mna)Jo(mny) sin mnu (55e)
m= 1.2

2 fY q{v)
h(y) = - J. 2 2 dv (55f)

no (y-v)
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and KI(y, y'), R 3(,.l, y) and RICA., u) are given by (48a, 44 and 39), respectively.
We also note that equations (51) yield

fb n: Jd
Da = (1-b)F(b)+ ° F(z)dz+ 2 ° e(y)dy (56)

(57)

(58)

and the constant E is equal to zero. Moreover, the complex constants Bn (n = - C/J, ... -1,
1, ... (0) are equal to zero and the equations (20 and 52) yield

n: fd fb2A.ncos2AnAnsinhAna = -2 0 e(y)QI(An,y)dy- 0 F'(z)Q(A.n,t)dt

Ql and Q being given by (52c and 26), respectively.
From equations (11 and 7) it is clear that

- hf I 2GO'xx(x, z) dz = 4GhD = Px

where Px is the total compressive force per unit width in the direction of the coordinate
axis x on any plane x = constant. This result (58) will be used in the next section.

5. APPLICAnONS

Infinite row of parallel edge cracks in a strip

The problem of determining the stresses in the neighborhood of edge crack~ placed
perpendicular to the axis of an infinite elastic strip is of importance in Fracture Mechanics.
The effect of two co-planar symmetrically placed edge cracks in a strip has been investi­
gated in [1]. If an infinite number of such edge cracks are arrayed periodically along the
axis of the strip, it is necessary to solve a mixed boundary value problem of a rectangle.
If the crack faces are subjected to the same pressure distribution, this problem becomes
a special case of what has been considered previously. For this purpose, we consider a
rectangle bounded by any two adjacent planes on which the cracks are located (x = ±aJ
and the planes z = ± 1, and assume that the pressure on each of the crack faces is GPI(Z),
b < Izi ::; 1. Then, we have .

F(z) = 0; P(z) = -PI(z); D = 0

2fY P1(1-v)
r(y) = 0 and h(y) = -- /( 2 2)dV = -hl(y)

n: o"y-v

(59)

(60)

in view of which the integral equation (54) reduces to the following Fredholm equation of
the second kind.

e(y)+y s: e(y')K(y,y')dy' = yhl(y)·

Various quantities of physical interest such as stress intensity factor and crack energy may
be easily expressed in terms of the function e(y). They have been evaluated for various
values of crack length and crack spacing from numerical solutions of equation (60). These
results will be reported elsewhere.
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Compression of the rectangle by two smooth rigid punches of identical shape

We will consider here two cases; (a) flat punch, (b) punch in the form of a smooth curve.
For case (a) we have F(z) = ~2' ~2h being the penetration of the punch and, for case (b)
we will take F(z) in the following form

M

F(z) = L ak~
k ~ 0.2

(61)

where the constants ak (k = 2,4, ... M) describe the shape of the punch and ao is yet
arbitrary. In this study we wish to give in some details numerical results for a flat punch
and a parabolic punch for which ak = 0 when k ~ 4. We also note here that for the type
of contact problems under consideration, P(z) = q(v) = 0 and, therefore, h(y) = O. Further,
2bli is the length over which the punch is in contact with the boundary of the rectangle.

Case (a). Flat punch. In this case r(y) = 0 and substituting O(y) = - 2D04(y) the integral
equation (54) reduces to

(62)

and from (56) we have

(63)

The "effective resistance" defined as the ratio of the resultant load Px and the penetration
is of practical interest which may be obtained from (58) and (63) as

P 4

G~2h = a+nS~04(y)di
(64)

The stresses and displacements may be evaluated by the use of the equations (6, 11-13)
with Bn = 0, n = - 00, ... -1,1, ... 00. The constant D is connected to ~2 by the relation
(63) and the complex constants An may be obtained by the use of (57) with O(y) = - 2DO4(y)
and F'(z) = O. It should, however, be noted that displacement consists of complex valued
functions and the evaluation of An necessitates a computation of Struve functions of
complex arguments. In order to circumvent this difficulty, therefore, it appears essential
to express the displacement and stresses in a different form by means of real functions.
This may be accomplished by a substitution of (57) in (6,11-13) and the use of the calculus
of residues. This procedure is similar to what has been employed in obtaining the identity
(32a). After a lengthy manipulation it may be shown that the stress an is given by the
following expression,

a (x v) 1 [f.d {ex;;x, = r °( d 1-n 64(y) L mnqlm(X)JO(mny) cos mnv
G~2 a+n 0 4 y) Y 0 m~1.2

- f q2m(X)R 3 (mn,y)R'1(mn,V)}dY]
m~1.2 a a

(65a)
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Qlm(X) = cosech m1ta(cosh m1tX - m1tx sinh m1tx + m1ta coth m1ta cosh m1tx] (65b)

(65c)

m1t m1tx
-cos--'

2 a a
Q2m(X) = - (2 2 \

a . m1t m1t)cos m1t smh -a-+-a-

R3 is given by (44) and R'l(A., v) is the derivative of R p equation (39), with respect to v
and is given by

R'I(A., v) = (cosh A.-A. cosech A.) cosh A.v-sinh A. sinh A.V

- A.V sinh A. cosh A.V + A.V cosh A. sinh A.v. (65d)

(66)

Similar expressions may be obtained for other components of stresses and displacements.
It may be shown that in this case the stresses are singular at the points x = ± a, Z = ±b.

Case (b). Punch in the form of a smooth curve. From (61 and 53) we have
M

F'(z) = L: klXki' - I

k=2,4

and
M

Fs(u) = L klXk(l- ul- I.

k= 2,4

In order to facilitate the analysis, we write

l1(y) = l1 3(y)-2D 1l14 (y)

such that l1 3(y) satisfies

(67)

(68)

(69)

Where K(y, y') and r(y) are the same as in (55). The constant 11. 0 is obtained by satisfying

rb
1t rd

(l-b)F(b)+)o F(z)dz+ 2 )0 l13(y)dy = O.

It is clear from (69, 58 and 56) that if we take l1(y) equal to l1 3(y), the resultant force trans­
mitted by the punch is zero. However, the stress field is singular at x = ±a, z = ±b.
The stress O'x.x(a, v) has a singularity of the form

1 (}3(d)

2 .J(v2 - d2 ) •

This singularity vanishes if we superpose the solution for the case of a flat punch, case (a)
indicated by the second term in (67). (}4(y) satisfies the equation (62) and the constant D1
may be evaluated as

(70)
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The process of superposition as described above has been used in contact problems when
they were attempted by the use of integral transforms or dual series relations [3, 4].

The total force Px transmitted by the punch and the penetration t1h are

Px = 4GhD l

t1h = (lXo + t1 1)h

where

t1 1 = DJ {a+1r I: 04(Y)dY}

and lXo , as obtained by the use of (61 and 69), is given by

CXo = _~2f.d 03(y)dy- I CXkbk(l-kkb).
o k=2.4 +1

The "effective resistance" is therefore

P 4D 1

Gt1h = -~2Jd 03(y)dy- f CXkbk(1-kkb1)+D J
o k=2.4 +

For a parabolic punch we take

(71a)

(71b)

(71c)

(71d)

(71e)

b 2
F(z) = cxo--2

z
(72)

Fs(u) = - b(1- u)

and substituting 03(Y) = bOs(Y) and D1 = bD2 we have from (67)

O(Y) = b06(y) = b[Os(y)-2D204(y)J (73)

where 04(Y) is the solution of (62) and Os(Y) satisfies

0s(Y)+Y f: Os(y')K(y,y')dy' = 2yr 2(Y) (74)

1 ~ 1+.j(1-y2) J fl
r 2(y) = nLlogd+.j(d2_y2)+.j(d2-y2)-.jO-y2) + d (1-u)Lg(u,y)du (75)

and Lg(u, y) is given by (SSe). From (70) we have

D - O~M) (76a)
2 - 20

4
(df

Equations (71) yield

Px = 4GhbD2 (76b)

~ = CXo + t1 J (76c)
b b

~J = D2{a+1r s: 04(y)dY} (76d)
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and

iXo = _! Cd (} ()d b
2
(3-2b)

b 2 Jo s Y y+ 6

from which we obtain

(76e)

P
Glih =

(76f)

Using a process similar to what has been used to obtain (65a) we can show that O'xx(x, v)
may be expressed as

O'xx(x, v) 1t fd II {~
- 2G' = D2+"2 lJ6(Y) '-' mnqllll(x)Jo(mny) cos mnv

(j 0 Ill'" 1,2

- f q21l1(X)R3(mn, y)R'I(mn, v)'} dy
m=1,2 a a

+ f 1 Fs(U){ f q IIlI(X) sin mnu cos mnv
d 111= 1,2

- f Q21l1(X)R 1(mn,U)R'I(mn, v)} du (77)
m=I,2 a a

where (J6(y) is related to (},(y) and (J4(y) by (73) and Qlm' Q21l1' R3, R\ and R 1 are obtained
from (65b, c, 44, 65d and 39), respectively. The integral equations (62 and 74) were

035
2a/'l

F(.l'J-Ll-8 .l'~

0'3
,-- x

025

10 Penetration-Lln

-P/GLlI7 0'2

.c:: 8 ----Ll/8<l
\:> Ll/8
"- 015Cl..

6

01

4

0,05

2

0'0 0-3 0'4 0,6 0,7 0-8 O-g

b

P i.\
FIG. I. Variation of Gi.\h and J with b and a for a parabolic punch.
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I
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\:) 6,.
Cl

4

Z

0·0

b
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FIG. 2. Variation of-- with b and a for a flat punch.

GA2h

numerically solved for various values of a and b (d = 1- b) by quadrature (trapezoidal
rule) and the numerical values of tJ./b and the effective resistance P/GtJ.h are shown graph­
ically in Fig. 1. The variation of P/GtJ.2h, the effective resistance for the case of a fiat punch
(case a), is shown in Fig. 2. The stress O'xx(x, z) is plotted against z (Fig. 3) for x = 0 and
x = 0·9a for a fiat punch as well as a parabolic punch (case b) when a = 0·25 and b = 0·4.

3

0'6

Flat punch - --

Unit of stress 2G

Porabolic punch-

0·0

0'1

0·3

I
/ I

X'090--/ I ~
0-4 -:::.__ ///X.0-9°i ~20.h 4

F=~~.;;;-:.:--------- .......... , I p- 2hL _. -p.
'I -

X· 0·0..--...., \

"" I 2 bh • length of conto

"'\,
\ ,
\ ,
\ \
\ ,
\ \
\ \

\ \
\ \
\ \, "

\ "
" , ,

FIG_ 3. Variation of nondimensional stress (Tn for b = 04. a = 0-25_
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A6cTpIucT--,uaeTCli cPopMyna. 8 8H4e CHCTeMJN 48YX HHTerpanbHWX ypaBHcHHil 4'pe,MOnbMa 8TOPOiO
POAll, Mil 06Mcro cny'l.811 JlpliMoyronbHoro ynpyroro TeJ1a B MOCICOM JlecjlopMHpoUHHOM COCTOIlHHH•
.l1Ba napannem.Hwe Kpall Tena CB0604HW OT TlIro.....x YCHnHA. KO Ha OCTaJlBHWlt ICpuX npeJ:lClCll3llHW
cMewaHHwe ycnOBHII. BH,Q CMcwaHHWX rpaHH'IHWX ycnoawA MOlKeT B03HHICaTb IICJIcJlCTBHe ClK8THII
48yMlI rna,ll-KHMH WTaMJ1aMM KnK HeKOToporo nepHOJUlYCCKoro pacnonOlKeHHII CHCTeMW TpeWMH 8
6ecxOHCYHO ,QJlMHHOA nonoce. 06cYlICJllleTCIi nO,llp06HO yrny6neHllc npAMoyronltlloro Ten& MOCKHM MnM
napa60nK'IccKHM WTaMnOM. -Unll BenH'I"H, HMelOWHX npaKTH'lecKHA HHTepee, npHBO,QlITCli '1HcncHHwe
pC'1ynbTaTw.


