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Abstract—The general case of a rectangular elastic body in plane strain, when two parallel edges are traction
free and mixed conditions are prescribed on the remaining edges, is formulated in terms of a system of two Fred-
holm integral equations of the second kind. The type of mixed boundary conditions may arise due to com-
pression by smooth punches or some periodic arrangement of a system of cracks in an infinitely long strip.
Indentation of a rectangular body by a flat and a parabolic punch is discussed in some detail and numerical
results are reported for quantities of practical interests.

1. INTRODUCTION

THE PRESENT study is concerned with an investigation of the two-dimensional plane
strain problem of stresses and displacements in a rectangular body. A system of Fredholm
integral equations of the second kind is obtained for the general case when two parallel
edges are stress free and mixed conditions are prescribed on the remaining edges. The type
of mixed boundary conditions considered here may arise due to compression by smooth
punches or some periodic arrangement of a system of cracks in an infinite strip. The
governing Fredholm equations are derived by extending the study presented in [1] by
the present authors in which Papkovich-Fadle eigenfunctions were employed to investigate
a certain group of crack configurations in an infinite strip. The integral equations are
numerically solved for various cases to obtain quantities of practical interests.

In the past, mixed boundary value problems of elastostatics in rectangular domain
have been discussed by Sneddon and Berry [2] for the case when two parallel edges were
restrained by smooth rigid planes. On the remaining edges mixed conditions arising due
to compression by two smooth punches of identical shape were prescribed. The problem
was treated by applying the method of complex variable. It is known, however, that
smoothly restrained edge conditions permit treatment of elasticity problems by Fourier
series and, therefore, are mathematically straightforward to analyze. On the other hand,
more natural boundary conditions of stress free edges introduce considerable analytical
difficulties. To handle this situation the method of integral transform [3] has proved quite
powerful but its application has been limited to the special cases when the edges are in-
finitely long. In a series of two papers [4, 5] Keer and Sve have solved the steady state
problem of compression of an infinitely long strip by moving punches. In the first paper [4]
which was concerned with a single moving punch, Fourier integrals were employed
whereas the other study [5] where an infinite number of punches were considered, Fourier
series were used. For both cases final results were based upon numerical solutions of

t The present results were obtained in the course of research supported by NSF Grant GK-25604.
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Fredholm integral equations of the second kind. It appears that no such integral equation
formulation has been attempted for the mixed boundary value problems of a rectangie
considered in this study.

Although the type of eigenfunctions considered here was introduced in two dimensional
problems by Papkovich [6] and Fadle [7] thirty years ago, its application remained limited
until recently. Among several studies of stresses and displacements due to known forces,
reference may be cited to Gaydon and Shepherd (8] and Johnson and Little (9], where
attention was focussed on an approximate solution by a finite number of terms obtained
after truncating the infinite series. We like to emphasize here that these studies may be
satisfactory only in those cases where singularities in stresses due to geometrical dis-
continuities do not exist. In the presence of such singularities a mere truncation of the
series is not permitted. For a correct solution the analysis will have to include the entire
series which may be accomplished by adopting the procedure of the present study.

2. STATEMENT OF THE PROBLEM

The rectangular domain is referred by the two co-ordinate axes hx and #z. The bounding
surfaces, z = +1, are considered to be free from tractions. On the remaining bounding
planes x = +a, the displacement u, and the normal stress o, are prescribed in the fol-
lowing manner.

uda,z) = —-(1-wFz); 0<ld <b<1 ()

P %&Q; b<iz <1 2
ul—a,z}={1-vF{z); 0<jdcec<l 3)
Ool~a,2) = szz); c<ld <1 @

7
A

The units of length and stresses are chgse;n to be h and 2G, respectively and F,, F,, P,
P, are assumed to be even in z. We will aiso assume

l’f,xr.(ia, 2) =0 0 < 12‘ <1l {S)

It may be noted that the solution proposed in Section 3 is capable of considering shear
stress distribution which is antisymmetric in z on the planes x = +a However, the
assumption of zero shear stress (equation 5) considerably simplifies the analysis and may
be appropriate in several practical applications.

In the next two sections we will reduce the plane problem of elasticity of the rectangle
with its edges z = +1 stress free and subjected to the mixed boundary conditions {1-5}
on the edges x = +a, to the solution of a coupled pair of Fredholm equations of the
second kind. In Section 5 we will discuss results based upon a numerical solution of the
Fredholm equations in the special case when the rectangle is compressed by two smooth
rigid punches of identical shape on the surfaces x = +a.
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3. SOLUTION OF NAVIER’S EQUATION

The displacements u, and u, are assumed in the following form

u, = —(1=v)(Dx+E)+ ) {A,sinhA,x+ B, cosh 4,x}4,f,,(2)

. n*0 (6)
u, = vDz+ 3 {A,coshA,x+G,sinh 4,x}{f,(2)+21—v)f(2)}
"s0
where v is the Poisson’s ratio D and E are unknown real constants and A4,, B, (n = — oc,

...—1,1,... ) are a set of complex constants. f,, and f,, constitute a set of complex
valued eigenfunctions symmetric in z satisfying the differential equations

’1’n+172|f1n=15f2n; '2'n+'l£f2n=0 (73)
with the boundary conditions
=MD+ 12D = A=)z D+ 1) =0 (7b)

In the expressions (6, 7a, 7b) f' = df/dz, 4, (n = 1,2,... o) are the nonzero roots of
sin 24+ 24 = 0 in the first quadrant of the complex plane and A_, = 4, (n = 1,2,... o0)
where 1 is the conjugate of . We have the following expressions for f,, and f,,.

f1h2) = A, tan A, +2(1 —v) cos 4,z — A,z Sin 4,2

®)
fan(z) = —2cos A,z.
Associated with (8) there exists a set of functions g,, and g,, given by
4cos? 1,8,(2) = —(4, tan 4, +2v)cos A,z + A,z sin 4,z o
4 cos?® A,g5,(2) = 2cos 4,z
such that the following generalized orthonormality relation holds, see Ref. [10].
1
f {12822+ [242)81:{2)} = 0; k#n
-1 (10a)
=1; k=n
We also note that
1
[IRCACECIEE (10b)
-1
Equations (6) yield the following expressions for the stresses o,,, 0,, and g_,.
0ex = —D+Y (A4, cosh 4,x + B, sinh 4,x)A2{ f,,(2) — v/2,(2)} (11)
Oy = 3 (A, sinh 4,x + B, cosh 4,x)4,{ £, (2)+ (1 —v) f2,(2)} (12)
6. = — 9 (A, cosh A,x+ B, sinh A,x)A2{ f, (2)+ (1 —v) f,,(2)} (13)

where z indicates summation overn = —oc,... —1,1,... cc.

n
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With the help of (7a) it may be easily shown that expressions (6) satisfy the Navier's
equation and equations (12, 13, 7b) imply that the surfaces = = +1 of the rectangle are
traction free.

Equations (I-5 and 6, 11, 12) yield the following system of series relations {or the

determination of the constants D, E, 4,and B,{n= —x.... =1, 1.... )
—(I=v)(Da+E)+) Chdfi0) = —(1=v)Fi(z): 0<zl <b (14)
1 . Pz
—D+Y (A, cosh A,a+ B, sinh ,a)d;{ f1 ()= vf2,2)} = ‘; ) b<izfgl (15
—(1=v(=Da+E)+Y Cla fill2) = (1-WF,(2): 0<izl<¢ (16)
. 2 . Py(z)
—D+Y (A, cosh d,a— B, sinh L,a)A{ f, (2) = v/,{2)} = 5 < lzZl<t (17
Y Gl iD=l =Wfol2)} = 0: 0 <z <1 {18)
Y CU fid) =1 =0 fo)} = 0: 0z < 1 (19)
where
C} = A,sinh A,a+ B, cosh 4,a (20
and
C? = — A, sinh i,a+ B, cosh 4,a. (21

It may be noted that to obtain (18 and 19) we substituted (12) in (5) and integrated the
resulting equations with respect to z. It is assumed that the order of integration and sum-
mation may be interchanged.

4. THE FREDHOLM EQUATIONS
To obtain the unknown constants from (14-19) we introduce two unknown f{unctions
¢ t), b <t < 1and @,(t,), ¢ <t; < 1such that the displacements u(—~a,2),c <zl < 1
and u/a, z), b < z < | are given by

uda,z) = —(1 —v)(Da+E)+§Cj,1nf;n(z) = —(1 »—v){f‘ ¢>1(t)dt+Fl(b)} :
bzl g1
uf—a,z) = —(t=v)(=Da+E)+Y C}i,fi,(2) = (1~v){ § 41 dt+F2(c)}:
c<ld <L {22)

Making use of (14, 21, 18 and 10b} it may be easily shown by a permissible change in
the order of integration and summation that

Da+E = (l—b)Fl(b)+f

b

i b
(1 =0, (1) dH—f F(z)dz. (23)
0
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Similarly (16, 22, 19 and 10a) yield

1 ¢
Da—E=(1—c)F2(c)+J. (1—t)¢2(t)dt+f Fy(z)d:=. (24)
c 0

The constants D and E may be evaluated by the use of (23 and 24) after ¢,(z) and ¢,(¢)
are determined. To obtain the Fredholm equations for the determination of ¢,(t) and
¢,(t) we employ the following procedure.

Equations (14, 21 and 18) in conjunction with the generalized orthonormality relation
(10a) and the expressions (9) yield

1 b
2cos? A,ClA, = —f qS,(t)Q(/l,,.t)dt—f F(0Q(4,,t)dt (25)
b

0

where

Q(4,1) = cot Asin Ar —1 cos At. (26)

It may be noted that we made use of a change of the order of integration in order to obtain
(25).

A similar procedure when applied to equations (16, 22 and 19) gives the following
expression for the complex constants C? (n = —,... —1,1,... x)

1 ¢
2cos? 1,C2A, = J d)z(t)Q(i,,,l)dH-f FL(0Q(4,, t) de. (27)
¢ 0

By the use of (25, 27 and 20) the constants A, and B, can now be expressed in terms ¢,(t),
¢,(1), Fi(t) and F(r). Substitution of these expressions and (8) in (11) and a change of
the order of integration and summation yields the following expressions for the stress
6., atx = +a,

1 b
D+o, (a.2) = acl_[f ¢, ()L, z)d1+f0 Fy (L%, z) dt
g b

1 <
+f ¢2(t)L§(t,z)dt+f Fy(t) L3, z)dt:' (28)

¢

1 c
D+an(—a,z)=(%U Go(LI1, 2) dr + f Fy(nLt, z) dt
b ¢ 0

1 b
+J ¢, (LS, z)dz+J. F ()L, 2) dr] (29)
b 0

where

A, coth 24,aQ(4,, 1)Q4,. 2
2cos? 4,

L,y = Y
" (30)

& A,cosech 24,a0(4,, HQ(4,. 2)
L= % 2cos? A '

n=—x
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Let us now consider integration of the function
i{ coth 2¢a
ni{sin 2{ + 20)

AL 00, 2)

around the contour I' consisting of the imaginary axis with indentations around the
points { = (imm/2a) (m = —M,... —1,0,1,... M), the semicircle || = (N +4)n in the
right hand half plane and the circles around the points { =i, (n= —-N,... —-1,1,... N)
as well as { = mn (m = 1,2,... N): where M is the largest integer less than or equal to
{2ZN + Da. Noting that the residues of the function at { = 4,, { = mn and { = imn/2a are

iA, coth 24,aQ(4,, HQ(4,, 2) i(coth 2mna + 2mna cosech® mna) sin mnt sin mnz

4m cos? 4, 2mn?
and

i mmn;2a mmn . mm
2an [sinh{mn/a)+(mn/a)] \2a’ 2a7°
respectively, where
R(4, t) = coth A sinh At —t cosh it
we obtain
LY, 2y = L, ) — L3(t, 2+ L3At. =
where

(coth 2mra— 1 + 2mna cosech? mna) sin mnt sin mnz

Lg([’ Z) = Z

m=1.2 mn
mn _|{mn 74
» ~R|—,tI1R|—.z
o 2a° \2a 2a
La(tv Z) = 7
b .. mn m
m=1.2 sinh — 4 —
a a
o .
sin mnat sin mnz
L) = 3 SLmmSmmEz
m=1,2 mr

In a similar manner by integrating the function

il cosech 2{aQ({, OIS, t)
(sin 2¢ +20)

around the contour I it may be shown that

Lt 2) = L2t, 1~ L3¢, )

feed

cosech 2mmna(l + 2mna coth 2mna) sin mmt sin mnz

LYt 2) =

6( Z) m=-‘Zl.‘l mmn
" %secme(—r;;.t)R(';—x,z)

L= Y .
m=1,2 mn  mn

sinh — +—
a a

{32¢)

(32d)

{33a)

(33b)

(33¢)
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With the help of the identities (32a and 33a) equation (28) reduces to
d 1
D+oxla 2 =4 {f ¢, (0 (L3(t, ) — L3(t, 2)+ L3(e. 2)] dt
b

b
+ f FLOLY 2)— L, 2)+ Lo, 2)] dir

0

1 ¢
+J () [LAt, 2)— LS(t, 2)] dt +j Fi(t)[L2t, z)— Lt, z)] dt}. (34)
¢ 0
A similar equation may be obtained from (29).

We now introduce the following transformations

t=1-—u, z=1-p, d=1-b, e=1-¢ (39
and denote

.0 =y (),  @,(1) = Yy(u)
Fi(t) = F5(u), Fy(8) = Fy(u) (36)
P,(z) = Ps(v) and Py(z) = P,(v).

By use of (35 and 36} we can write (34) as

d
D+o, la.t) = —(% '{Jow,(u)[Lg(u, v)+ LY(u, v)— L3(u, v)] du
1
+j Fy(u)[LY(u, v)+ LY(u. v)— LIAu, v)] du
d

e 1
+f () [L&Au, v)— L(u, v)] du+f Fy(u)[L%u, v)— L3(u, v)] du} (37
Q 4

where
mn mn mn
R (5] 5]
© 2q* '"N2a”7) "\ 2a’
L. ) = Z a a a
m=1.2 sinh 22 4+ ™%
a a
and (38)
w %secman(%.u)R,(T—Z,v)
Liu.v) = Z — -
m=1.2 sinh 2% 4+ %
a a

R, (%, u) being given by

R (7., u) = ucosh A(1 —u)—cosech ~ sinh Au. (39)



1200 SHYAM N. PrasaD and SAILDENRA N. CHATTERJEE

We now introduce two more unknown functions &,(4;)0 < u, < dand 0,(u;),0 < u, < e
such that

__d 6y
Wy(u) = “dul, md}’
and (40)
d (¢ 6,

Yo(u) = i mdy.

Substituting (40 in 37) and making use of equations (32b, d, 33b and 38) as well as some
well known identities [11] we obtain

D+o.{a,v) = —-—{ f 6,(y) Z Jo(mmy) sin mudy}+H°() (41)
m=1,2
where
Hv) = ——{ J 8, (WL o(y, v)— LY, (y, v)] dy

+f Fa(u) [L3(u, v)+ LY(u, v} — L(u, v)] du
d

4 1
+ 7_2r J‘ 0,(») LY 2y, v) = LY 5y, v)] dy + f Fy(u)[L3(u, v) ~ L3(u, v)] du} (42)
0 ‘ve

L%, L%, L%, and L?; are expressed by the following,

0

L%y, v) = Y (coth2mmna— 1+ 2mna cosech? 2mna)Jo(mny) sin mnv

m=1,2
R3 n,yR mn,v
0 1 & 2 2a 2a
Lu()’,U)=a Z ——
m=12 smh—+—
a
L%(y,v) = Y cosech 2mna(l+ 2mna coth 2mna)Jy(mmny) sin mnv
m=1,2
® EsecmnR3 r_nlz’y R, Lnf—,v
0 1 a 2a 2a
Ly,0) =~ %
an,=12 mn  mn
sinh —4+—
a a

where
R,(4, y) = (cosh A — A cosech A)Iy(Ay) + Ay cosh Al (dy)—sinh ALy(dy)

—Aysinh 4 E+ Ll()tk)] (44)
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I, and I, are modified Bessel functions and L, and L, are modified Struve functions.
It may now be noted that equation (2 or 15) is satisfied (refer to equations 36 and 41)
if

D+£3—i) dv{J- 6.y i Jo(mmy) sin mnv dy} +H%); O0<v<d 45)

2 m=1,2

Use of a well known identity [12]

0 H(p— @
T Z Jo(mmy) sin mno = ———(g—yl— f exp{ —s) cosech sl (sy)sinh svds  (46)
m=1,2 \/(U -¥9) 0

reduces (45) to an equation of the Abel type whose solution may be written as

d e
y)+y f 6,0V K5y, y) =K (y, y)]dy +y f 6,(y)K 5y, y) dy'
0 (¢}

= =2y[D+r,(y)+r(y)]): 0<y<d (47)
where,
K,wy) = f s exp(—s)o(syMo(sy’) ds . (48a)
0
K,(»,y) = n[ Y mn(coth 2mna— 1 + 2mna cosech? 2mna)Jo(mny)Jo(mny’)
m=1,2
mn mn mn
-z R y
o B
T a Z - - mn  mn (48b)
m=1.2 sinh — + —
a a
b o]
K.y y) = n‘: Z mn cosech 2mna(l + 2mna coth 2mna)Jo(mny)Jo(mny’)
m=1,2
mn mn mn
| » Zsec mnR3(§—~,y)R3( P ,y)
a.% e (sc)
me12 sinh — 4+
a a
F3(u)
l(y \/ u _y d —-_J‘ F3(u)L14(,V, )
f F3(u)[LYo(y, w)— LY, (y, u)] du+J. F () [LO,(y, u)— L% (y,w)] du (48d)
l YO P,
2() \/(y (j)b (483)
L. u) = f exp(~— s) cosech sly(sy) sinh su ds (48d)
0

and LY,, LY,, L%,, L%, and R, are given by (43 and 44),
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By the use of {29, 32, 33, 35, 36, 38 and 40), it may be shown in a similar manner that
equation (4) or (17) is satisfied if

e d
B,(y)+y J- 8,0 Ky, ¥) =K (y, y)ldy +y f 0,y )K;(y, y)ydy
] O

= =2y[D+ry(+riy]: 0<y<e (49)

where

F
) = j T “‘“} . f FAW)L(y, ) du
i
+f o) [LO oy, u)— L2, (y, w)] du+ j Fy(W) L0y, w)— LO5(k, f] du  (50a)
and
P

) =2 [ (50b)

It should be noted that the first term in the right hand sides of the equations (47 and 49)
is —2Dy. By the use of (23, 24, 35, 36 and 40) the constants D and E may be expressed as

d €
2Da = T1+T2+1-2I{f Hl(y)dy-f-f Gz(y)dy} (51a)
0 4]
1 nd €
2E = Tl—T2+“2"{J Bx(yidy—J ez(y)dy} (51b)
0 0
where
b
T, = (l—b)Fl(b)+f F(z)dz (51c)
0
and
T, = (1 —c)FZ(C‘)%-fC Fy{(z)dz. {51d)
0

The functions 8,(y) and 6,(y) may now be evaluated by solving the simultaneous
Fredholm equations of the second kind obtained by the substitution of the value of D
from (51a) in (47 and 49). After these two functions are obtained the real constants D and
E may be evaluated by the use of (51a, b). The complex constants C! and C? can be ex-
pressed in terms of the functions #,(y) and 8,(y) by the use of the equations (25 and 27),
the transformations (35, 36 and 40) and some well known identities [11]. For the sake of
brevity we give the final results as

d b
2005* 1,Clay = =5 [ 0,000,001y = [ FL(0QU,. 01 (522)
0 0

2cos? A,C24, = ——f 8,(»)0Q, {J.,,,y)dy-é—f Fy3(0Q(4,, 1) dt {52b)
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where
Q1(4, ¥) = (cos A~ A cosec A)Jy(Ay) — Ay cos AJ;(4y)

+sin AH {Ay)+ Ay sin A {%— H, {4 y}} (52¢)

and Q(4, 1) is given by (26). In (52¢) H, and H, are Struve functions of complex arguments.
Since the complex constants 4, and B, may be evaluated by the use of (20 and 52) the
mixed boundary value problem described in Section 2 may now be considered as formally
solved. Based upon this formulation, in the next section we discuss some problems of
practical interest in which the stress and displacement fields are even in x. When symmetry
about z-axis is maintained we must have ¢ = b or e = 4 and, therefore,

Fi(2) = Fy(z) = F(z)

8,(y = 0,(t) = 6(t)

Pz} = Py{z) = P(2) {53)
Py(v) = Py(v) = glvy = P(1—-v)

Fy(u) = Fyu) = Fi(u) = F'(1—u).

In view of (53) the two integral equations (47 and 49) reduce to

By |
60+ y f 80/)K (. y) dy = —2y [D+r(y}+ ‘2) ’] 0o<y<d (54)
0

where
K(y,y) = K v, y)—Ksy, y¥)— K, (3, ¥) (55a)
o

Ky, y)=mn Y mnlcoth mna— 1+ mna cosech? mna)Joimny)Jo(mny’) {55b)

m=1.2
mn mn mn
R R '
a 3( a ) 3( s Y

2n &
K.(y,y) = — 55
s ¥) a m;u 2mn 2mn (35¢)
’ sinh — 4 ——
a a
]
1
Hy) = J‘ Fs(u)L%u, y)du:  L%u, y) = ——5———~ L3(u. y). (55d)
‘ /(= y?)
1 o0
Liu,y) = - f exp( —~ s) cosech sly(sy) sinh suds
[¢]
mn mn mn
2 0 '—‘;— R3( s .)) Rl a )
-3
£ 2
@m=12 gy _TE+_2ﬂ7_1
a a
+ Z {coth mna— 1 + mna cosech? mra)J,(mny) sin mnu (55e)
m=1.2

h(y) —-J \/(q(” do (55f)
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and K,(y, y'), R;5(4, y) and R {4, u) are given by (48a, 44 and 39), respectively.
We also note that equations (51) yield

b d
Da=(1—b)F(b)+f F(z)dz+gf 8(y) dy (56)
4] v o

and the constant E is equal to zero. Moreover, the complex constants B, (n = —c0,... —1,
1,...00) are equal to zero and the equations (20 and 52) yield

d b
2,005 Aydysinh i = =3 [ 00000 N dy= [ FQUy 08 (57
2 0 0

Q, and Q being given by (52c and 26), respectively.
From equations (11 and 7) it is clear that

1
—hf 2Go.(x,z)dz = 4GhD = P, (58)
-1

where P, is the total compressive force per unit width in the direction of the coordinate
axis x on any plane x = constant. This result (58) will be used in the next section.

5. APPLICATIONS

Infinite row of parallel edge cracks in a strip

The problem of determining the stresses in the neighborhood of edge cracks placed
perpendicular to the axis of an infinite elastic strip is of importance in Fracture Mechanics.
The effect of two co-planar symmetrically placed edge cracks in a strip has been investi-
gated in [1]. If an infinite number of such edge cracks are arrayed periodically along the
axis of the strip, it is necessary to solve a mixed boundary value problem of a rectangle.
If the crack faces are subjected to the same pressure distribution, this problem becomes
a special case of what has been considered previously. For this purpose, we consider a
rectangle bounded by any two adjacent planes on which the cracks are located (x = +a)
and the planes z = + 1, and assume that the pressure on each of the crack faces is Gp,(z),
b < |z| < 1. Then, we have ’

F(zy=0; P(z) = —P,(2); D=0
2 (? Pl-v) (59

y)=0 and h(y) = = Omdv = —hy(y)

in view of which the integral equation (54) reduces to the following Fredholm equation of
the second kind.

d
80y)+ f 60/ )K(y, y) dy = yh, (). (60)
0

Various quantities of physical interest such as stress intensity factor and crack energy may
be easily expressed in terms of the function 6(y). They have been evaluated for various
values of crack length and crack spacing from numerical solutions of equation (60). These
results will be reported elsewhere.
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Compression of the rectangle by two smooth rigid punches of identical shape

We will consider here two cases; (a) flat punch, (b) punch in the form of a smooth curve.
For case (a) we have F(z) = A,, A,h being the penetration of the punch and, for case (b)
we will take F(z) in the foliowing form

M
Fo)= Y o (61)

where the constants a, (k = 2,4,... M) describe the shape of the punch and «, is yet
arbitrary. In this study we wish to give in some details numerical results for a flat punch
and a parabolic punch for which o, = 0 when k > 4. We also note here that for the type
of contact problems under consideration, P(z) = g(v) = 0 and, therefore, h(y) = 0. Further,
2bh is the length over which the punch is in contact with the boundary of the rectangle.

Case (a). Flat punch. In this case r(y) = 0 and substituting 8(y) = — 2D6,(y) the integral
equation (54) reduces to

d
04(y)+yf 0,0 )K(y,y)dy =y (62)
0

and from (56) we have
d
A, = D{a+nf 6.(y) dy}. (63)
0

The “‘effective resistance™ defined as the ratio of the resultant load P, and the penetration
is of practical interest which may be obtained from (58) and (63) as

P 4

= ) 64
GAh  a+n 5 0,(y)dy (64)

The stresses and displacements may be evaluated by the use of the equations (6, 11-13)
with B, = 0,n = —o0,... —1,1,... 0. The constant D is connected to A, by the relation
(63) and the complex constants 4, may be obtained by the use of (57) with 8(y) = —2D6,(y)
and F'(z) = 0. It should, however, be noted that displacement consists of complex valued
functions and the evaluation of A, necessitates a computation of Struve functions of
complex arguments. In order to circumvent this difficulty, therefore, it appears essential
to express the displacement and stresses in a different form by means of real functions.
This may be accomplished by a substitution of (57) in (6, 11-13) and the use of the calculus
of residues. This procedure is similar to what has been employed in obtaining the identity
(32a). After a lengthy manipulation it may be shown that the stress o, is given by the
following expression,

oG

_ OxX,0) - 1 [l—n f dg (y){ Y mng(x)Jo(mny) cos mav
2GA,  a+nf20,(y)dy R - P

-y qzm(x)Rs('"“,y)R;(?, v)}dy} (65a)

m=1,2 a
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where

q1miX) = cosech mnafcosh mnx — mnx sinh mnx + mna coth mna cosh mnx]  {65b)

mn mnx
2 a cos a
= \ 65
9am(X) a .. 2mn 2mn (63¢c)
cos mr| sinh & + =

R, is given by (44) and R/(4,v) is the derivative of R,, equation (39), with respect to v
and is given by

R (4, v) = (cosh A— A cosech A) cosh Av —sinh 4 sinh Av
— Av sinh 4 cosh Av+ Av cosh 4 sinh Av. (65d)

Similar expressions may be obtained for other components of stresses and displacements.
It may be shown that in this case the stresses are singular at the points x = +a,z = +b.
Case (b). Punch in the form of a smooth curve. From (61 and 53) we have

M
Fz)= Y hkaz*! . (66)
k=2,4
and
M
Fsw) = Y ko(l—uft
k=2,4
In order to facilitate the analysis, we write
8(y) = 05(y)—2D,64(y) (67)

such that 6,(y) satisfies
d
05(y)+y f 05()K(y, y)dy = —2yr(y). (68)
0

Where K(y, y') and r(y) are the same as in (55). The constant «, is obtained by satisfying

b d
(1—b)F(b)+J‘0 F(z) dz+%fo 6i3(y)dy = 0. (69)

It is clear from (69, 58 and 56) that if we take 6(y) equal to 6,(y), the resultant force trans-
mitted by the punch is zero. However, the stress field is singular at x = +4, z = +b.
The stress o, (a, v) has a singularity of the form

L_65d)
2 Jwr=d?¥
This singularity vanishes if we superpose the solution for the case of a flat punch, case (a)
indicated by the second term in (67). 6,(y) satisfies the equation (62) and the constant D,
may be evaluated as
03(d)
26,@)

D, = (70)
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The process of superposition as described above has been used in contact problems when
they were attempted by the use of integral transforms or dual series relations [3, 4].
The total force P, transmitted by the punch and the penetration Ah are

P, = 4GhD, (71a)
Ah = (g +Ah (71b)
where
d
A = D,{a-&—nj‘ &(y}dy} {71ic)
o]
and a,, as obtained by the use of (61 and 69), is given by
n M ' kb
- - -— 71d
2,"0 03(}’)dy k:z";akb (1 k+1) ( )
The “effective resistance” is therefore
P 4D,
= (71e)
GAh d M kb a
-—Ef 0;(y)dy~- 3 akb"( 1———|+D, a+nJ‘ 8,(y)dy
2Jo k=24 k+1 0
For a parabolic punch we take
6
F(z) = ag—=2°
° 2 (72)

Fo(u) = =41 —u)
and substituting 85(y) = 684(y) and D; = 6D, we have from (67)

8(y) = 686(y) = 8[05(y)—2D,0,(y)] (73)
where 8,(y) is the solution of (62) and 84(y) satisfies

d
85(}’)+}’f 651Ky, y)dy = 2yr,(p) (74)

i 1 1- !
ro(y) = [loga—_%(dr%)-ﬁ\/ -y - J=y ] L(l_u)Lg(u,y)du (75)

and L3(u, y) is given by (55¢). From (70) we have

0s5(d)
= 76
D2 = ) (762)
Equations (71) yield
P, = 4GhéD, (76b)
é - 2o+ 4, (76¢)
é é

d
—A;Sl =D, {a+7tJ‘ 0.(») dy} (76d)

0
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and
% T d b*3—2b)
5= "2), 85(y)dy+ 3 (76e)
from which we obtain
P 4D,
7
GAh b*(3-2b) (76f)

. :
_._f Bs(y) dy+——— +Dz{a+n£) 94(y)d}'}

Using a process similar to what has been used to obtain (65a) we can show that o,,(x, v)
may be expressed as

@

ToxlX, D) n J“’
56 ™ D,+ 5 é)é(y){m;1 ) mngq  u(x)Jo(mny) cos mnv

. sz(x)Rs( ,y)R'( )} dy

m=1,2

X0
f F,(u){ Y qym(x)sin mru cos mav
m=1,2

Z q2m{x)Rx(—— u)R’( )} du (77
m=1,2

where 64(y) is related to 84(y) and 8,(y) by (73) and q,,,, 42m» R3, R} and R, are obtained
from (65b, ¢, 44, 65d and 39), respectively. The integral equations (62 and 74) were
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F1G. 1. Variation of AR and 5 with b and a for a parabolic punch.
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F1G. 2. Variation of with b and a for a flat punch.
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numerically solved for various values of a and b (d = 1—b) by quadrature (trapezoidal
rule) and the numerical values of A/é and the effective resistance P/GAh are shown graph-
ically in Fig. 1. The variation of P/GA,h, the effective resistance for the case of a flat punch
(case a), is shown in Fig. 2. The stress ¢,,(x, z) is plotted against z (Fig. 3) for x = 0 and
x = 0-9a for a flat punch as well as a parabolic punch (case b) when a = 0-25 and b = 0-4.
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Abcrpaxt—aercs GhopMynd, 8 BHAC CHCTEMbI ABYX HHTErpafibHbix ypasueumil Ppearonbma sroporo
poaa, ans o6Mero ciy4as APAMOYTOJILHOrO YAPYIoro Tena B INOCKOM ACHPOPMHDOBAHHOM COCTOSHMH.
[isa napannensHmple Kpas Tena CBOGOAMBI OT TATObBIX YCHNHH, HO HA OCTANBHBIX XpasX NpPEACXa3anbl
CMeLanHble YCNIOBUA. Bua CMEMIAHHLIX rPAHHUYHBIX YC/IOBBIH MOXET BO3HHKATH BCIICACTBHE CHKATHS
ABYMS TNaf-KHMH WITAMIAMH WK HEKOTOPOTO NEPHOAMYECKOTO DACNONOMEHHA CHCTEMbI TPEILWH B
Becxoneyno anunxoit nonoce. O6cyxaaerca noapobuo yray6ierue NPAMOYTOABROTC TEIA IIOCKHM HAM
napabonuueckum wramnom. [N BeHYMH, HMEIOWHX NPEKTHYECKUA HWHTEPEC, NPHBOARTCH YHCICHHLIC
PEIYABLTATHI.



